114 research outputs found

    On the role of the inducible enzymes iNOS and COX-2 in colitis

    Get PDF

    Antimicrobial peptides – Unleashing their therapeutic potential using nanotechnology

    Get PDF
    Publisher Copyright: © 2021 The AuthorsAntimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs’ immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds—complicated by infections, inflammation, and stagnated healing—as an example of an unmet medical need for which the AMPs’ wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.Peer reviewe

    Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases

    Get PDF
    Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N-6-methyl-adenosine (m(6)A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.Peer reviewe

    The Immune and Regenerative Response to Burn Injury

    Get PDF
    Burn are diverse and complex injuries that not only have local effects but also serious systemic consequences through severe and prolonged inflammatory response. They are caused by heat, electricity, friction, chemicals, or radiation and are commonly divided into superficial, superficial partial-, deep partial- and full-thickness injuries. The severity of the burn depends mainly on the size and depth of the injury but also on location, age, and underlying systemic diseases. A prolonged and strong immune response makes major burns even worse by causing multiple systemic effects including damage to the heart, lungs, blood vessels, kidneys, and other organs. Burns that do not require surgical excision, superficial and superficial partial-thickness, follow the known progression of wound healing (inflammation, proliferation, remodeling), whilst deep partial- and full thickness injuries requiring excision and grafting do not. For these burns, intervention is required for optimal coverage, function, and cosmesis. Annually millions of people worldwide suffer from burns associated with high morbidity and mortality. Fortunately, over the past decades, burn care has significantly improved. The improvement in understanding the pathophysiology of burn injury and burn wound progression has led to developments in skin grafting, fluid resuscitation, infection control and nutrition This review article focuses on the immune and regenerative responses following burn injury. In the Introduction, we describe the epidemiology of burns and burn pathophysiology. The focus of the following chapter is on systemic responses to burn injury. Next, we define the immune response to burns introducing all the different cell types involved. Subsequently, we discuss the regenerative cell response to burns as well as some of the emerging novel treatments in the battle against burns

    The Immune and Regenerative Response to Burn Injury

    Get PDF
    Burn are diverse and complex injuries that not only have local effects but also serious systemic consequences through severe and prolonged inflammatory response. They are caused by heat, electricity, friction, chemicals, or radiation and are commonly divided into superficial, superficial partial-, deep partial- and full-thickness injuries. The severity of the burn depends mainly on the size and depth of the injury but also on location, age, and underlying systemic diseases. A prolonged and strong immune response makes major burns even worse by causing multiple systemic effects including damage to the heart, lungs, blood vessels, kidneys, and other organs. Burns that do not require surgical excision, superficial and superficial partial-thickness, follow the known progression of wound healing (inflammation, proliferation, remodeling), whilst deep partial- and full thickness injuries requiring excision and grafting do not. For these burns, intervention is required for optimal coverage, function, and cosmesis. Annually millions of people worldwide suffer from burns associated with high morbidity and mortality. Fortunately, over the past decades, burn care has significantly improved. The improvement in understanding the pathophysiology of burn injury and burn wound progression has led to developments in skin grafting, fluid resuscitation, infection control and nutrition This review article focuses on the immune and regenerative responses following burn injury. In the Introduction, we describe the epidemiology of burns and burn pathophysiology. The focus of the following chapter is on systemic responses to burn injury. Next, we define the immune response to burns introducing all the different cell types involved. Subsequently, we discuss the regenerative cell response to burns as well as some of the emerging novel treatments in the battle against burns
    • …
    corecore